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Intrinsic excitations of the rotational levels of even-even nuclei and the intrinsic structure of the wave 
functions are investigated. The rotational levels of negative parity are treated on the same basis as the 
levels of positive parity. The experimental energy levels are analyzed in order to obtain information about 
the intrinsic excitation in excited states of even-even nuclei. 

I. INTRODUCTION 

THE complex spectra of nuclei have successfully 
been accounted for by the Bohr model,1*2 espe

cially in the rotational region. In this model, the under
lying assumption is that the nucleus consists of a core 
of particles, tightly coupled together, and an extra 
particle or group of particles rather loosely bound to 
this core. The core is generally deformed from the 
spherical shape, and its rotation gives rise to rotational 
levels. 

Further progress in nuclear phenomenology has been 
achieved by Davidov and others.3"5 They have been 
able to account for the level schemes and transition 
probabilities in the vibrational region as well as in the 
rotational region. In the Davidov-Filippov model, the 
presence of extra particles is not assumed.6 The wave 
function of the nucleus is supposed to be invariant under 
a rotation of 180° around the coordinate axes fixed to 
the nucleus, so this model does not apply in the case 
of negative parity. 

In the case of negative parity, the bands are pre
sumed to be due to the presence of octupole vibration,7 

with the result that the corresponding wave function 
transforms quite differently from that of the Davidov-
Filippov model. It would be hoped, of course, that 
theory could treat any band on the same basis. 

In the present article we intend to discuss the ex
citation of even-even nuclei from a systematic point of 
view in which all bands are treated on the same basis; 
differences between them are presumed to be due pri
marily to different excitation of the extra particles. 

In Sec. II, the relation between the energy spectrum 
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and the intrinsic excitation is discussed. In Sees. I l l 
and IV experimental energy levels are analyzed on the 
basis of Sec. II. In Sec. V, some remarks on y transi
tions are presented. 

II. INTRINSIC EXCITATIONS AND ENERGY LEVELS 

A. Model Adopted in the Present Paper 

In nuclear physics, it is often assumed that a single 
particle or group of particles, such as an alpha particle, 
are rather loosely bound to the remaining core. We will 
adopt such a model, but with the understanding that 
the core is not necessarily a closed shell, and that the 
other particles are coupled intrinsically in the singlet 
state, and insofar as a few bands near the ground state 
are concerned, behave as a single particle. We shall 
assume that with respect to the body-fixed frame the 
third component 0 of the angular momentum of the 
extra particles is mainly zero,8 although in general, this 
quantity is not a good quantum number. The assump
tions with respect to the core are that (1) the spin of 
the core is zero; (2) insofar as we neglect the effect of 
the Coriolis force, the wave function of the core is 
invariant under any rotation of 180° around the co
ordinate axes; and (3) the excitation of the core appears 
as the rotational energy. Thus, the present model is 
just the Bohr model1'2 although we shall not adopt the 
liquid drop picture of the core. 

B. Classification of the Wave Function 

When the angular wave function ^iAfiy) of the total 
system expressed in the space-fixed frame of reference 
(the y frame) is projected onto the axes fixed to the 
core (the z frame), it is expressed as9 

*iM(y) = i: £>MKT**IK(Z) 
K 

= L E E I ^MK^QLQK-QIILIK) 
K L l Q 

XXW$L,K-Q. (2.1) 

Here xm is the angular wave function of the extra 
8 Reference 2, p. 97. 
9 The definition of the ©Malfunction is identical to that by-

Rose [M. E. Rose, Elementary Theory of Angular Momentum 
(John Wiley & Sons, Inc., New York, 1957)]. 
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particles relative to the center mass of the core; $L,K-U 
is the angular wave function of the core. 

In what follows, we shall add the superscript / , re
ferring to the total angular momentum of the system, 
to ^L,K-Q (whence $L,K:-Q J)J a n ( i w e shall let QL.K-Q1 

include the radial wave function of both the extra 
particles and the core in addition to the angular part 
of the core. Furthermore, we shall assume that QL.K-Q1 

includes various mixing parameters with respect to L, I 
and 0. At the same time, we shall understand that 
^iuiy) is now the total wave function in the y frame. 

TABLE I. Character of four types of the irreducible representa
tion of the Z>2 group. For notation see Eq. (2.10) in the text. 
Capital letters describe the type of core and lower case letters the 
type of extra particles. 

Type 

A a 
Bi hi 
B2 b2 
Bz h 

(E) 

1 
1 
1 
1 

(CVO 
1 

- 1 
- 1 

1 

(CW 
l 

~ i 
l 

- l 

(c2
2) 
1 
1 

- 1 
- 1 

Introducing the wave function $X, ,K 7 ( ± > for K?*0, by 

* £ . K
7 ( ± ) = (1A£)(*L,XJ±$L._KJ), (2.2) 

and the notation 

the wave function ^iu(y) separates as follows: 

(2.3) 

(2.4) 
where 

and 
Ll 

*IM ( 2 ) = Z E (IL0K\ILIK) 
Ll K>0 

Xxzo(3D^ / (+ )*#LK J (+) + a ^ J ( - ) * ^ K J ( - ) ) . 

The wave function ^"JM ( 3 ) contains all terms with 
Q>0 . We shall neglect the contributions from this wave 
function, assuming them to be small. (The wave func
tion ^f/M(3) is described in the Appendix.) 

We shall now examine the the rotational properties of 
the wave function. Let us consider the D2 group,10 

which consists of rotations of the order 2, Cix> C2V, and 
CV, about three axes fixed to the core. Let U(xyz) be 
any wave function referred to the frame fixed to the 
core. Then C%x, C2

y, C%z are defined by 

and 

C2xU(xyz)~ U(x—y—z), 

C2yU(xyz)=U(—xy—z), 

C2zU(xyz)=U(—x—yz), 

(2.5) 

10 L. D. Landau and E. M. Lifshitz, Quantum Mechanics (Addi
son-Wesley Publishing Company, Reading, Massachusetts, 1958). 

or in terms of Euler angles, 

c2
x(d<p+)=(e+T, <p, - G H - T ) ) , 

C2*(0<^)=(0-7r, * > , - $ , 
and 

C2°(d<p+)=(e,<p,*+7r). 

These properties lead to the following relations: 

C2X^MKI*={~)I^M-KI\ 

C2*®MKI*={-)I+K^M-KI\ 

C2
xXio=(— )~lXiOy C2

yXio=(— )~lXw, C2
zXiQz=Xio, 

and 

C2^LmL
I(±) = dt(-)-{I^nL)^LmL

I(±) (for WLS*0) , 

C^LmL
H±)={-)-mL^LmL

n±\ 

(for W L = 0 ) , 

(2.6) 

(2.7) 

(2.8) 

C 2 ^ 0
J = ( - ) - L $ L O J , 

C2
y$L0I=(-)-L<i>L0I, 

(2.9) 

Note that the parity of a state is given by (— ) l + L . 

TABLE II . Classification of the wave function ^7^ ( 1 )( j£=fi=0). 
In this case I-\-l-\-L is even due to the property of the Clebsch-
Gordan coefficient. The boldface characters show the wave func
tions chosen in the text. Thus, (a) the band with iT = 0+ ; 7 = 0+, 
2+, 4+- • • (J=even, L=even), and (b) the band with K — 0"; 
I—l~, 3~, 5~- • • (/ = odd, L = even) remains, if we consider that 
the wave function of the core belongs to the type A . 

Parity 
Type of wave 

function 

even 
even 
odd 
odd 

even 
odd 
even 
odd 

+ 
+ 
— 
— 

Aa 
Bxh 
Bxa 
Abi 

Introducing the notation 

(£)=(£/ | l |E0 , 

(C2*)=(tf|C2*|£0, 
(C2

y)=(U\C2y\U)J 

(cy)=(tf|c2 ' | j/), 

(2.10) 

we classify the D2 group into four irreducible repre
sentations according to the corresponding transforma
tion property. This is shown in Table I. This classifica
tion is applied to ^IM(1) and ^IM(2\ the results being 
shown in Tables I I and I I I , respectively. 

We observe that the wave function can be other 
than type A insofar as the invariance of the total wave 
function written in the y frame with respect to rotation 
within the z frame is concerned. This can be shown by 
using Eqs. (2.1), (2.7), (2.8), and (2.9), together with 
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TABLE III . 

Â  

even>0 

odd 

Classification of the wave function *kiM{2)(K>Oy 12=0). The boldface characters 
show the wave function chosen in the text. 

/ 
even 
odd 
even 
odd 

Parity 

1 
+

 1
 +

 

L=even 

&LKI(+)X10 

Aa 
Abi 
Bia 
B^ 

&LKH }XIQ 

Bia 
Bibi 
B2a 
B2bi 

Parity 

1 +
 1 +

 

L = odd 

*LJC / (+)X«0 

Bia 
Bih 
B2a 
B2bi 

&LKI( }XZ0 

Aa 
Abi 
Bsa 
BJ>X 

the following property of the Clebsch-Gordan coefficient: 

(abap\obcy)= (-)a+^c(ab-a-/3\abc-y). (2.11) 

We are free to choose any type for the core wave func
tion. However, we choose type A since this has the 
most symmetric form. 

Once we adopt the wave function of type A, the K 
value should be even for all energy levels as seen in 
Tables I I and I I I . Table I I shows that for K=0±

J 

L assumes only even values. From Table I I I , one sees 
that for the band iv = 2+ either L=even, /=even or 
L=odd , Z=odd or a mixture of both, and for the band 
K=2~ either L=even, /=odd or L=odd , /=even or a 
mixture of both. The rotational wave function is given 
by £>MKI{+)* for L=even and by £>MK / ( _ ) * for L=odd . 

To determine what kind of L is most probable for a 
given band, we shall consider the Schrodinger equation 

( # 0 + # r o t ) * = £ * . (2.12) 

The rotational Hamiltonian £Trot can be expressed by 
Euler angles, but the intrinsic Hamiltonian H0 does not 
include such coordinates. Correspondingly, S)MKI(±)* is 
expressed in terms of Euler angles, while $MKH±) is 
described only by intrinsic coordinates. Putting ^ J M ( 2 ) 

into (2.12), orthogonality of £>MKI(+)* to ^MK1^* 
immediately leads to the result that wave functions of 
different even-oddness with respect to L cannot be 
mixed, but, rather, belong to two separate bands.11 

Since in the bands K=0±, L assumes only even values 
and since bands K=Q~~, 2± appear very closely, as in 
W182, for example, it is most natural to assume that L 
takes on only even values for K=2±. (The tentative 
assignment12 for the K value of the level sequence 
1-, 3~, 5-, • • • of W182 is 1-. The possibility that this 
might be 0~ as is the case for Ra226,13 will be discussed 
in Sec. IV C.) 

In conclusion, L=even for all bands under considera
tion and Z=even (odd) for positive (negative) parity 
bands. I t is interesting to note that / should not be 
zero for the band K= 2+, since otherwise we would have 
the energy spectrum 7=2+, 4+, 6+, • • • in contradiction 
with experiment. Therefore, I is even and equal to or 
greater than 2 for K= 2+ On the other hand, / may be 0 

11 So long as we consider the core to be type A, we arrive at the 
same conclusion even if we add the Coriolis interaction to (2.12). 

12 C. J. Gallagher, Jr., and J. O. Rasmussen. Phys. Rev. 112, 
1730 (1958). 

13 F. S. Stephens, Jr., F. Asaro, and I. Perlman, Phvs. Rev. 
100, 1543 (1955). 

for K=0+. I t is for this reason that we have considered 
the presence of extra particles besides the rotating core. 
In the Davidov-Filippov model, the intrinsic wave 
function of the band K=2+ was assumed to be the 
same as that for K=0+. This does not always seem to 
be justified. 

From the above discussion, it is very tempting to 
assume that the bands K—0+, 0~~, 2+, 2~ are char
acterized by 1=0, 1, 2, and 3, respectively, in an ex
tension of the work by Nilsson14'15 and Mottelson15 for 
the case of even-odd nuclei. For our present purposes, 
however, it will not be necessary to develop this idea 
any further, since the experimental analysis (Sees. I l l 
and IV) requires only a knowledge of the even-oddness 
of/. 

In preparing for the following sections, we have to 
discuss general features of the rotational Hamiltonian 
i 7 r o t i n E q . (2.12). 

I t can be expressed quite generally as 

/ * 2 \ 3 L2 

o-l Ma
2 

(2.13) 

where La is the angular momentum operator of the sys
tem, which can be expressed by the Euler angles and Ma 

will be an operator expressed by the intrinsic coordinates; 
i.e., the coordinates which describe the residual degree 
of freedom and, thus, which describes the intrinsic 
motion in the body-fixed frame of reference. The 
orthogonality of the set of the Euler angles to the set 
of the intrinsic coordinates in the 3AT-dimensional co
ordinate space leads to the following important prop
erties of the operator Ma: Firstly, [ M a , L a ] = 0 , or 
[ M a

_ 1 , Z a ] = 0 . Secondly, Ma couples the states only of 
the same / . Finally, Ma may couple states of different 
K as well as the states of the same K, because different 
K means the intrinsic excitation. The first property of 
Ma enables us to write the rotational Hamiltonian Z7rot 
simply as g ^ 

# « * = ( - ) £ — (2.14) 
\ 2 / a=i Ja 

where Ja=Ma
2. 

As usual, defining operators L± by 

L±=LidLiL2, 
14 S. G. Nilsson, Kgl. Danske Videnskab. Selskab, Mat.-Fys. 

Medd. 29, No. 16 (1955). 
15 B. R. Mottelson and S. G. Nilsson, Kgl. Danske Videnskab. 

Selskab, Mat.-Fys. Skrifter 1, No. 8 (1959). 
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we can express the rotational Hamiltonian in the form 

fi2{/ 1 1 \ 

2lWi \jj 

+~Z3
2+( )(L+*+LJ)\. (2.15) 

J% W i W J 
Because the operator L± shifts the value of K in one 

unit, the shift of | AK \ = 2 results from the last term 
whenever JIT^JI. Thus, in an asymmetric rotator, K is 
not a good quantum number. 

Let us finally write down, then, the wave function 
which will be used in the following sections. 

Noting that the asymmetrical effect of the rota
tional motion mixes K and Z ± 2 , the total wave func
tion (2.4) of the system becomes 

X 

+ - E E (SW*+(-)'»*_*'•) 
V 2 X i f=even>2 

X*IK,X+ (2.16) 

for the levels with positive parity and 

^ J A T O O ^ E 3 W * * I O , X -
x 

+ - L E (aWM-) 7^-* 7*) 
V 2 X i£:=even>2 

X*iK,r (2.17) 

for the levels with negative parity. Here X means some 
quantum number other than I, K, and I. In (2.16) 
and (2.17), 

S T o . x ^ E E (lLOO\lLlG)Xi^Lo^, (2.18) 
l L=*even 

where 7 = even, /=even for i£=0+; and 7=odd, Z=odd 
for A > 0 - \ Also in (2.16) and (2.17) 

^ . x ^ E E {lLQ2\lLI2)xiSfL2,xH+\ etc., (2.19) 
l L«even 

where /=even for K=2 and /=odd for K=2~. The 
quantum number / may assume any value equal to or 
greater than 2. 

Except for the fact that we do not take ^Tio,\+ to be 
equal to ̂ I2,\

+, ^iM+iy) as given by (2.16) takes the 
same form as the corresponding wave function due to 
Davidov and Filippov.8 Wave functions ^fiM±(y) as 
given by Eqs. (2.16) and (2.17) take the same form as 
the wave function due to Bohr [Eq. (91) of reference 1], 
if we take, as we discussed in the present paper, j = even 
(odd) for the levels with positive (negative) parity in 
Bohr's wave function. 

At this point, the author would stress that in the 
following sections any further assumption on the nature 

of Ho and Ma and, hence, of ̂ IK,^ will not be intro
duced. This is the difference between the previous works 
and the present one. 

To calculate the rotational energy, we have to make 
use of the relations 

L^MK'^XIK^^MKTI1*, (2.20) 

where 
/ 1 d d d\ 

L±= -ie^H hcot0— dzi— ), (2.21) 
\ smdd<p d\f/ 86/ 

Lz=—id/dip, 
and 

XIK±=l(I^K)(I±K+l)J*. (2.22) 

III. ENERGY LEVELS OF THE SYMMETRIC 
ROTATOR 

In this section we shall consider the bands K = 0±, 
assuming the coupling to the bands K=2± to be small. 
However, the band K=0+ may, in some cases, be 
coupled to another band with K=Q+. 

When the rotational energy of the total system is 
treated as a perturbation of the binding energy of the 
lowest state of each band, the first-order energy of the 
total system is given by 

£ ' = £ « ' - ' • + (fc2/2) (1/J)/ . j0 t«7 (7+1) . (3.1) 

Here 7o=0 for K=0+ and 7o= 1 for K = tir-f a stands for 
quantum numbers other than 7, and ( l / / ) /= i 0 , a is the 
expectation value of the operator 1/Ji ( = l / / 2 ) with 
respect to the state ^j0o,a+. In this approximation, 
levels belonging to the same rotational band will have 
the same expectation values of the operator ( l / / i ) . 

In practice it is often necessary to go beyond first-
order perturbation theory.1617 When only one excited 
band, whose lowest energy is given by e, is strongly 
coupled to the band to which the ground state belongs, 
the solution of the secular equation derived from the 
Schrodinger equation (2.12) with (2.15) and (2.16): 

I £ - 4 / ( 7 + 1 ) - C / ( / + l ) ; 
| = 0 . 

I-C7(/+1) E-e-BI(I+l)\ 

Namely, the following formula gives a more accurate 
value of the energy: 

E™ = l{e+(A+B)I(I+l)±l(e+(B-A)I(I+l))* 
+4C272(7+1)2]1/2}, (3.2) 

where 
A = J*2(l /7)a-0 , £ = ! * 2 ( l / / ) « - l , 

and 
C=Jf t 2 ( l / / ) a . 0 i a ' - l . 

16 K. R. Jacob, J. W. Mihelich, B. Harmatz, and T. H. Hanclley, 
Phys. Rev. 117, 1102 (1960). 

17 F. S. Stephens, Jr., R. M. Diamond, and I. Perlman, Phvs. 
Rev. Letters 3, 435 (1959). 
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TABLE IV. Application of formula (3.2) to the case of Pu238. 
Given the first four values in the second column, and putting 
values A =7.37, £ = 11.14, and 4(7= 13.4 into Eq. (3.2), we calcu
late EQ to be 936 KeV. The last column shows the prediction from 
the Bohr-Mottelson formula*: £ = (#/2J)I(I+l)-i(l/1tofi)2 

X (£ / / ) 3 / 2 ( /+D 2 , taking **/2/ = 7.374 and *»,=1.10X10». 

Ei 

Experimental Present 
value calculation 
(keV) (keV) B.M. 

E2 
E, 
E* 
E* 
E0 

44.11 
146.0 
303.7 
514 
935 

44.10 
146.1 
304.2 
518.4 
936 

44.11 
146.0 
303.3 
521.7 

1100 

* See reference 2. 

a = 0 and 1 mean the band including the ground state 
and the first excited band with i£ = 0+ , respectively. 

The wave functions referred to the frame fixed to the 
core are given by 

where 
( V ^ = X I { A I 2 + [ 1 ± (1+Xz2)1'2]}1/2, 

2I(I+1)C 
(33) 

Xr= 
e+(B-A)I(I+l) 

The plus and minus signs in (3.2) and (3.3) refer to 
the upper and lower bands, respectively. 

Let us now give a few examples for the symmetric 
rotator. 

(i). £ = 0+ 
Given the experimental values18 of the levels 2+ (44.11), 

4+(146.0), 6+(303.7), and 8+(514) for Pu238, we can 
predict the lowest energy of the next higher band with 
X = 0+ and compare it with the experimental value 
(935). (Throughout the paper, the unit of energy is 
taken as 1 keV.) Putting the values A = 7.37, B= 11.14, 
and 4C2= 13.4 into Eq. (3.2) we get the results shown 
in Table IV. Note that the deviation from the Bohr-
Mottelson formula is appreciable.19 The same thing 
was reported by Marklund, Noijen, and Grabowski.20 

Table V shows the values of mixing parameters for 
each state of the lower band. From this table, we see 
that in each case the mixing of the upper band with the 
lower band is very small. 

1 8 1 . Perlman and J. O. Rasmussen, in Encyclopedia of Physics, 
edited by S. Fliigge (Verlag Julius Springer, Berlin, 1957), Vol. 
42, p. 109. 

19 After completion of the paper, Dr. H. Verheul [thesis, Vrije 
University at Amsterdam, 1962 (unpublished)]] informed the 
author that the formula (3.2) gives the best result compared with 
other models for Hf178: 

Exp. 
(3.2) 

E% 
93.2 
93.4 

E4 
306.9 
309.3 

Et 
632.7 
638.6 

E% 
1059.7 
1062.1 

A'o 
1197 
1197.0 

Ei 
1277 
1275.5 

2 0 1 . Marklund, B. Van Nooijen, and Z. Grabowski, Nucl. Phvs. 
15, 533 (1960). 

(2). K^Qr 

A typical example is Ra22(i, for which the K value is 
known to be 0 from the branching ratio of the y transi
tion.13 Experimental and theoretical energy spacing 
ratios are 

(£5—Ei)/(Ez—Ei) = 2.SS (experimental value21), 
= 2.8 [theoretical value from 

(3.1)]. 

We should like to stress that one need not consider the 
octupole vibration model to get the above ratio. 

IV. THE ASYMMETRIC ROTATOR 

A. Energy-Level Formula 

From a generalization of Eq. (3.1), the first-order 
energy of Eq. (2.12) is given by 

1 1 
£ K J = €* ' - "+£#] — [ / ( / + 1 ) - X 2 ] + K> (4.1) 

$K and $3K are the diagonal matrix element of the 
operators ^ ( l / 7 i + l / / 2 ) and I/ /3, respectively, with 
respect to the state K: 

"-{(HJJ1
 *-(T)/

 <42) 

Putting the wave function (2.16) or (2.17) into 
(2.12) and using (2.15) and (2.20), we get the secular 
equation 

I E-EK1 
— f*IKgK,K+2 

~l*IK+2gK+2,K E — ERW 
= 0, (4-3) 

for J = 2+, X = 0+; 7 = 3 ~ K = 0r; 7 = 4~ # = 2~ Here, 
MIK=MIA:+2. They are given by : (1). M2+,o+=V3/2; 
(2). M3-,o-=(15)1/2/2; and (3). M4-.2-= (35)^ /2 . The 
factor gK,K> in (4.3) is the nondiagonal matrix element 
of the operator \h2{\/J\— I/J2) between the states K 
and Kf. The solution of Eq. (4.3) is given by 

^T,K+2 

E -I,K 
^{(EKW+EK1) 

±l(EKW-EKn'2+^IK^gK,K+2\2J''2}. (4.4) 

T A B L E V. Mixing parameters for the K — 0 band of Pu238, 
calculated from formula (3.3). 

Ca<
+> Ca^ 

0 
2 
4 
6 
8 

0 
0.0115 
0.0361 
0.0698 
0.1073 

1.000 
1.000 
0.999 
0.998 
0.994 

21 F. S. Stephens Jr., F. Asaro, and I. Perlman, quoted in 
reference 7. 
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TABLE VI. Intrinsic parameters for nuclei calculated from Eqs. 
(4.1)-(4.5); a0+, the inverse of the moment of inertia of the i£ = 0+ 

band: (•h2/2)(l/$o+); a2+, the inverse of the moment of inertia of 
the __=2+ band: (W/2)(l/g2+); b, €s++2tf(-l/$2++l/$t,2+) J 
C, the asymmetric effect, C = 4 |g 2

+ ,o+ | 2 . (Davidov and Filippov 
assume tha t e 2

+ = 0 . I n the present paper, this is not assumed.) 
These intrinsic parameters provide good agreement for the states 
/ = 4 + (JS>2+) and 7 = 6+ ( i £ = 0 + ) , except for Pu238. On the other 
hand, Table I V shows the successful prediction for the energy of 
the s ta te 7 = 0 + (__=0+) of Pu238. Hence, in Pu238, the ground 
s ta te X = 0 + band is coupled more strongly with the first excited 
K — Q+ band. T h e parameters in the present table are calculated 
without such a coupling. Accordingly, the parameters for Pu238 in 
this table are not reliable, and are only included for the sake of 
reference. 

Nucleus 

Sm152 

Gd154 

Dyieo 
Er166 

Er168 

\\ri82 
\yi84 

Os190 

pu238 

_<T 

20.93 
21.12 
15.25 
13.46 
13.33 
16.70 
18.64 
32.48 
8.775 

#2 + 

23.53 
21.84 
14.92 
12.87 
12.90 
17.42 
17.86 
33.40 
8.935 

b 

942.1 
863.5 
870.0 
709.1 
744.8 

1117.2 
796.2 
344.7 
967.9 

10"4C 

1.923 
1.727 
2.226 
0.1067 
0.07865 
0.05865 
0.2533 
1.718 
4.530 

Reference 

22 
23 
24 
16 
16 
12 
25 

26,27 
18 

Here we should take the positive (negative) sign for 
ET,K+2 and the negative (positive) sign for Er _r, if 
EKW>EK1(EKW<EK1). (4). For the levels of 7=4+ 
in which K—Qfr is predominant, the mixing of iv = 4 + 

may be neglected, because ^ = 0 + is indirectly coupled 
with K — 4+. Thus, we may use formula (4.4) for 
£4

+ ,G+ , and with less accuracy, for £4
+,2+. Here M4+,o+ 

= :2V /5. (5). Under the same conditions as for E4+,o+, 
the formula (4.4) may be applied to JV,o+ with Me+ O+ 

= {imyiyi. Finally, in the case of (6). JEi-.o-, (7). 
E2~t2~, and (8). Ez+,2+, we may use the formula 

EI,K=EK
I
J (4.5) 

because there are no coupled levels. 
If we assume 

_Jo+=<02+, (4.6) 
we have the relation 

E3
+,2+=£2

+,0
++£2+,2+. (4.7) 

This is the relation put forth by Davidov and Filippov.3 

As we saw in Sec. I I , the intrinsic wave function of the 
band K—Q+ will not be identical with that of the band 
K~2+. However, the experimental results as summar
ized by Jacob et al.u (see their Table XII) show that 
this relation is nevertheless fairly well satisfied. This 
fact may indicate that the number of extra particles in 
the sense of the present paper is rather small. 

B. Application to Levels with Positive Parity 

Using the energies of the first two excited states of 
the band K=0+ involving the ground state and those 
of the band i £ = 2 + , we can get values for a few intrinsic 
quantities as shown in Table VI.12'16'18'22"27 We can also 

22 O. Nathan and S. Hultberg, Nucl. Phys. 10, 118 (1958). 
23 K. S. Toth and J. O. Rasmussen, Phys. Rev. 115, 150 (1959). 
24 O. Na than , Nucl . Phys . 4, 125 (1957). 

T A B L E VI I . Calculated energy value of the s ta te 7 = 4 + , K = 2+ 

and comparison with experimental values. T h e parameters used 
are listed in Table VI . References are the same as those of Table V I . 

Nucleus 

Sm152 

Gd164 

Dy160 

Er166 

Er168 

W182 

Os190 

Pu238 

Experimental 
value 
(keV) 

1399.7(?) 

957.2 
996.3 

1500.6 
956 

Present 
calculation 

(keV) 

1464 
1352 
1240 
970.7 
989.0 

1468.0 
1118.7 
1268.3 

Exp/calc 

1.035 

0.986 
1.007 
1.022 
0.855 

predict the energies of more highly excited states. 
Thereby, the assumption (4.6) will not be used. 

Using the values in Table VI, we have calculated the 
energies of the state 2"=4+ of the band K=2+, and 
7=6+ of the band i£=0+. The results are listed in 
Tables VII and VIII, respectively. In carrying out the 
calculation, we have assumed the coupling to the state 
of the band j£ = 4 + to be negligible in both cases. 

For the case 7 = 4 + , K=2+, we see that the agree
ment between experiment and theory is quite good: 
There is less than a 4 % difference for all nuclei, with 
the exception of Os190. For that particular nucleus, the 
discrepancy may be an indication that the coupling 
with the state of i £ = 4 + is no longer negligible. 

For the state 7=6" f , i ^ = 0 + , we also have good re
sults in the case of Er166, Er168, W182, and Os190. The 
success in Os190 is especially interesting in that the 
deviation from the 1(1+1) rule or the al (7+1) 
+W2(_ r+1)2 rule is serious, as shown in Table IX, 
whereas formula (4.3) allows a good fit. Also it is very 
interesting to note that in Os190, ( £ 2

6 - £ O 6 ) 2 « 4 J U 6
+ O + 2 

TABLE VIII. Calculated energy value of the state 7=6 + , A' = 0+ 

and comparison with experimental values. The parameters used 
are listed in Table VI. We can not get satisfactory results for 
Pu238 using the parameters in Table VI. This means that in Pu238 

the coupling of the band i £ = 0 + with the band K=2+ is not im
portant. On the other hand, the coupling of this band with the 
first excited band of K—0+ is important, as Table IV shows. 

Experimental Present 
value calculation 

Nucleus (keV) (keV) Exp/calc 
_____ __ _ _ _ __ 

Gd154 ••• 682.6 
Dy160 ••• 378.8 
Er166 545.3 545.5 0.9996 
Er168 548.9 546.0 1.005 
W182 680.38 694.8 0.9792 
W184 ••• 751.3 
Os190 1048 1044.7 1.003 
Pu2*8 303.7 

25 C. J. Gallagher, Jr., D. Strominger, and J. P. Unik, Phys. 
Rev. 110, 725 (1958). 

26 O. B. Nielsen, N. O. R. Poulsen, R. K. Shelin, and B. S. 
Jensen, Nucl. Phys. 10, 475 (1959). 

27 W. R. Kane, G. T. Emery, G. Scharff-Goldhaber, and M. 
McKeown, Phys. Rev. 119, 1953 (1960). The author thanks Dr. 
Emery for a private communication on this matter. 

file:////ri82
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X |g2V|2; i.e., the asymmetric effect is of paramount 
importance determining the energy level. 

For Pu238 we can not get the correct value of E^y 
by considering the asymmetric effect of the rotational 
motion. On the other hand, Table IV lists quite satis
factory results for this nucleus. Hence, we conclude 
that in Pu238 the band K=0+ including the ground state 
is coupled strongly with the first excited band with 
K=0+ and not with the band i_ = 2+. For this reason 
we cannot relay on the intrinsic parameters for Pu238 

as given in Table VI. 
At the present time, data are lacking for similar 

analyses on other nuclei. When such becomes available, 
we may gain important information on the intrinsic 
excitations in the excited states of even-even nuclei.19 

C. Application to Levels with Negative Parity 

At the present time information on levels with nega
tive parity is lacking. The only exception is W182; it 
has three bands which have been assigned negative 
parity.12 However, there is a problem in this assign
ment ; the K value of the level sequence 1~, 3~, and 5™ 
has tentatively been set to 1~ from the ordinary in
tensity rule7,28 but the estimate of the gamma-ray in
tensity is somewhat uncertain even in this nucleus. 
Furthermore, since three bands are close together and 
presumably strongly coupled, the intensity rule might 
not be applicable at all. In view of this uncertainty, we 
should study the case for both 2_= 1~ and K=0~. 

If we assume first that the level sequence 1~, 3~~, and 
5~ belongs to the band 7L = 0~~, then the description in 
Sec. IV A applies. The formulas, though simple, con
tain many parameters, especially for the levels of 
negative parity. To reduce the number of parameters, 
we take as a first approximation; 

#o-~52-«#4-, (4.8) 
and 

g2-(T~g4 2-. (4.9) 

Then we have the relation 

^3^0~+£V,2~=£Y ,(T + £V,2~ 
+ 16(AV2)(l/5»-), (4-10) 

TABLE IX. Energy levels of Os190. In the present calculation, 
the energies of first two levels in this table and the energies of 
first two lowest levels of the band K = 2+ were taken from experi-
ment. a b The energy of the level 7 = 6+ is then calculated. 

Experimental Present / ( / - f l ) +bP(f+l)2 

Level value calculation rule rule 
_____ _ _ _ _____ _____ 

4+ 547 546.6 619.4 547 
6+ 1048 1045 1302 818.6 

R See reference 26. 
b See reference 27. 

28 G. Alaga, K. Adler, A. Bohr, and B. Mottelson, Kgl. Danske 
Videnskab. Selskab, Mat.-Fys. Medd. 29, No. 9 (1955). 
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from which we get 

(*V2)(l/^o-)= 14.72 

using the experimental values of T̂ -.o™, £Y\2"> 7V,<r, 
and J_y,2-. Next using the formula for 7 = 1 " and 
7=2", we have 

&0 __eui= 1225.7, 
and 

£2-__ e2-2+2/>2[- ( l /&-)+ (1/53.2-)]= 1201.2. 

These results show that £(r3>£Y3, accordingly j-V.o" 
>J_3-,2-, in agreement with the experimental level 
ordering. 

Then using the formula for I = 3~, we get 

4:\g2-,o~\2= 108.41. 

Next using the assumptions (4.8) and (4.9), we get 
from the formula for 7=4~ and the experimental energy 
value of the lower level of 7=4~~, 

i4-=e4-4+8A2[-(l/54-)+(l/53.4-)]= 1225.3. (4.11) 

In deriving this value, it was immaterial whether 
J_V-,2~>£4_,4~ or Ei~,2~<Ei~ii~. However, since the re
sulting value of b\- is greater than that of #2", it must 
be that E/cx>E$rx> This result is the inverse of the 
present experimental assignment. However, we should 
bear in mind that, owing to the coupling, the usual in
tensity rule is no longer applicable to the assignment 
of the K values in this energy region of W182. 

Adding the formula for 7 = 4", 2£=2~ to that for 
7=4~, K=4r~ and again using Eq. (4.8), we get the 
equation 

Ei-,2-+Ei-A-=b2-+h-+40(h2/2)(l/3o-). (4.12) 

Finally, we obtain the value of E\-t<r= 1527.4. The ex
perimental value of the upper level of 7=4~ is 1533.6. 
The ratio of the experimental value to the theoretical 
one is therefore 1.017, and the fit is very good. 

If we next assume that the sequence 1~, 3", and 5™ 
belongs to the band K = 1~, then the wave function of 
the system is the 2?2a-type or the J33a-type with odd 
values of L. Since the levels with K= 1~ do not couple 
to the bands with K=2~ or K=4r, and since we have 
no band with an experimental assignment of K=3~~, 
the levels 1~, 3~, and 5~~ must form an isolated band. 
In this case, the energy of these levels will be given 
simply by the 7(7+1) rule. Applying this rule, we are 
able to select out, as belonging to the K= 1~ band, the 
1450.9-keV level from the two levels with 7=3~, and 
the 1659.8-keV level from three levels with 7=5". 
Since the level of 7=3~ belonging to the band K—2~ is 
not coupled to the other bands, we can estimate the 
value of (h?/2)(l/$2-) and 52~ from the experimental 
values of the levels 7=2~ and 7=3~ of K=2~. The 
levels with K=4r obey the formula (4.4). Finally, we 
obtain the value of b±- from the formula (4.11). How
ever, the value of b±- thus obtained is too large and it 
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makes the quantity 4|g4~2-|2 negative when we deter
mine its value by using the formula (4.4), applied to 
J = 4 ~ , K=2~~. This is not satisfactory. 

From the above discussion it would therefore seem 
reasonable to assume that the K value of the level se
quence 1~, 3~, and 5~ in W182 is zero. At the same time, 
this example justifies the use of the wave function 
(2.17). 

V. THE ^--TRANSITION PROBABILITIES 

If we assume only coupling between the states I—2+ 

of two bands with K=0+, the ratio of the reduced 
El-transition probability between the levels 7 = 1 ~ , 
K=0~ —>J=0+, K=0+ to that between levels 7 = 1 ~ , 
K = 0r-*I=2+, K=0+ is given by 

£ ( £ l ; l - 0 ~ - > 0 + 0 + ) 

£ ( £ l ; l - 0 - - > 2 + 0 + ) 

|(1100|1100)|2 

(Ca^^Kiiooii^o)!2 

= 0.S(Ca(-))" (5.1) 

Here Ca
(~} is given by (3.3). In Pu238, this ratio is 

0.5, to be compared with the experimental value13 of 
0.6±0.15; Cai~) = ly as shown in Table V. We want 
to stress again that insofar as the ratio of the level 
spacing (Sec. I l l ) and the ratio of the El transitions 
are concerned, it is not necessary to use the liquid drop 
picture of the core, nor the octupole vibration model 
for the band K=Qr. 

In the event that the coupling between levels 7 = 2 + , 
K=Q+ and / = 2 + , K=2+ is rather strong, Ca

(~} in the 
above formula should be replaced by a2o(-), defined by 

aiK^^XiKiXiK'+Ll^a+XiK2)112^-112, 

2fXlKgK+2,K (5.2) 

x IK— m 
EKW-EK1 

In general, the calculation of other 7-transition proba
bilities requires an explicit form for the wave function. 
This is achieved only at the expense of further assump
tions. Rather than do this, we shall simply discuss 
some of the general aspects of the problem. 

Predictions using our wave functions will not differ 
greatly from those of the usual intensity rule, as can 
be seen from the following: If the mixing of the bands 

i £ = 0 + and 2+ comes from the asymmetric effect, then 
using (5.2), we can express the wave function (2.16) 
in the form 

^iM,o+=0ro ( )3DAfoJ* /̂o,x 
- aJ0

(+) (1/V2) ( 2 W * + 3^/-2r*) m x 

for /T=0+, 
and (5.3) 

^IMX = #/o(+) £>M o1* <pio,\ 
+aiow (1/V2) ( 3 W * + 3)M-27*) m x 

for K=2+. 

For example, a2o(+) = 0.06234, a2o
{~) = 0.9981, <z4o

(+) 

= 0.2171, and fl40
H = 0.9761 for Sm152; a20

(+) = 0.01636, 
a20c-) = 0.9999, a40

(+) = 0.06351, and a4o(_) = 0.9980 for 
Er168. These values are to be compared with the follow
ing values which are used in deriving the usual intensity 
rule: a2o(+) = #4o(+)==0, a2o(""):=«4o(~)=l. One would, 
therefore, expect the theoretical branching ratio using 
the wave function (5.3) to agree with experiment when
ever the usual intensity rule holds. This rule should 
hold in those regions where mixing due to the asym
metric effect is very small, namely at low-lying levels 
in the rare-earth region (as seen from the column 5 of 
Table VI). 

VI. CONCLUSIONS 

I t has been shown that the present approach gives 
some information on intrinsic excitation of even-even 
nuclei. The validity of this paper does not depend on 
the exact nature of the moment-of-inertia operator Af 0. 

Also, it has been shown that the rotational levels of 
negative parity can be treated on the same basis as 
those of positive parity in every respect: with regard to 
the rotational property of the wave function, the energy 
levels, and the 7-transition probabilities. 

The wave function employed in the present paper 
gives very good results with respect to energy levels 
and with respect to those 7-transition probabilities 
where the usual intensity rule holds. 
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APPENDIX 

The Explicit Form of the Wave Function WIM
iZ) in (2.4). 

Introducing the wave function XJO ( ± ) for &^0, 

X W ( ± ) = ( 1 / V 5 ) ( X I O ± X I - O ) , 
^IM(3) in (2.4) can be expressed as 

where 
fe/(3) = ^ M ( 3 a ) + ^ M ( 3 6 ) + ^ ( 3 c ) , 

(Al) 

(A2) 

*iM(3a)=Z E K^o-oUz/o)^fo
J*{(x^(+)^or(+)-xm(-)^^r(-))[i+(-)^L-1] 

LI Q>0 
( K = 0 ) + W ~ ) ' W ( + ) - x m ( + ) < W ( - ) ) [ l - ( - ) i + w ] } , 
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*IM(U) = E E (ILKO IILIK) (£>MKI(+)*XlKi+)$LQI+ toMK^-^XlK^M1), 
Li K~Q 

(K>0,Q>0) 

and 

*IM ( 3 C )=E( Z + Z ) 
LI K-Q>0 K-Q<0 

(K>Q,Q >0,K Ŝ2) (K>0,S2>0,jK:̂ fi) 

+ a)i/icJ(")*(xw(+)*L.K-oJ(-)+Xza(-)*L.is:-o7(+))] 
1 

VZ 

+ ^ M K
/ ( - ) * ( x m ( + ) ^ , K + Q J ( - ) - X ^ ( - ) ^ , K + Q 7 ( + ) ) ] l 

Corresponding to (2.8), we have 

C*xio ( ± ) = ± ( - ) - ' x « i ( ± ) , C2«Xm(±) = ± ( - ) - ( ' + Q ) x u 2 ( i ) , and CVXm ( ± )= ( - ^ V ^ , (A3) 

for fi^O. 
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Proton Scattering by NiM and Zn64 at 9.6 and 11.7 MeV* 
J. BENVENISTE AND A. C. MITCHELL 
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AND 
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Differential cross sections for elastic scattering of protons from Ni64 and Zn64 were measured and compared. 
The observed shift in the positions of the maxima and minima of the differential cross sections is shown to be 
consistent with the presence of a symmetry energy term [C(N—Z)jA~\ in the real nuclear potential of the 
optical model. It is found that C~40 MeV, in reasonable agreement with the results of other observations. 

Comparison of the back-angle data yields an estimate of about 15 mb for the compound elastic-scattering 
cross section of Zn64 at 9.60 MeV. The 11.7-MeV data show no contribution from compound elastic scattering. 

I. INTRODUCTION 

ON E assumption adopted in the early development 
of the optical model1,2 of the nucleus is that the 

depth of the real potential is independent of the mass 
number. This seemed quite reasonable in the beginning, 
in that any restrictions which could be placed on the 
many parameters used in fitting experimental data were 
welcome. This assumption has turned out to be quite 
fruitful. Remarkable success has been reported in de
scribing the results of proton interactions with a wide 
range of nuclei over a large breadth of energies. 

More recently, theoretical studies3"-22 have shown that 

* Work performed under the auxpices of the U. S. Atomic 
Energy Commission. 
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